If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-9-12=33
We move all terms to the left:
3x^2-9-12-(33)=0
We add all the numbers together, and all the variables
3x^2-54=0
a = 3; b = 0; c = -54;
Δ = b2-4ac
Δ = 02-4·3·(-54)
Δ = 648
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{648}=\sqrt{324*2}=\sqrt{324}*\sqrt{2}=18\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-18\sqrt{2}}{2*3}=\frac{0-18\sqrt{2}}{6} =-\frac{18\sqrt{2}}{6} =-3\sqrt{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+18\sqrt{2}}{2*3}=\frac{0+18\sqrt{2}}{6} =\frac{18\sqrt{2}}{6} =3\sqrt{2} $
| 29=k`9 | | −10=3x−1 | | −10=3x −1 | | 75+6x-3=180 | | 5f+2f=9 | | y/3+6=-14 | | 9x–8=4x+17 | | v/6=7 | | 2x-11+2x-27=100 | | (2x-2)(x+5)=180 | | 11r+88=7 | | y=34y+7 | | 2y=y+40 | | 2.3y+3.2-y=2.1+1/3y+1.1 | | ‐21=b/7 | | -6d-12=-36 | | 17=-8+x^2 | | 10x=8+11x-4 | | 6x+2x-9=46 | | 0,5x-33+x=-42 | | 14x=12x-6 | | x+6+7x=2x-36 | | 5(5x-12)=50x | | 8x+20+11x-21=180 | | -24=3m-12 | | 2.8x+9=5x-4 | | 26x2+18x=48x=6 | | 3(x+6=149 | | 16÷x=8 | | 5h+35=125 | | n-15=41-5n | | -4x+29-x=2(×-17) |